PHYS 101. Physics for Nonscientists (variable title). 4. Introductory course, intended for students with limited mathematical background and centered on one of several topics such as an in-depth look at the physics of energy or a survey of modern physical thought. The relevance of physical laws to both society and the environment is discussed. Fulfills natural science/mathematics requirement (1998 & 2019).

PHYS 104. Elementary Electronics (CTIS 104). 4. Introduces students to the behavior of the fundamental building blocks of modern electronic devices and the underlying scientific principles that make these devices work. Topics will be derived from analog and digital electronics and include resistance, capacitance, diodes, signal filtering, positive and negative feedback, operational amplifiers, Boolean logic, logic gates, and digital to analog conversion. This course is designed for the general student population (but not physics majors and physics minors) who are interested in exploring the fundamentals of electronics. Prerequisite: Successful completion of the quantitative literacy requirement. Spring. Fulfills natural science/mathematics requirement (1998 & 2019). Offered in alternate years.

PHYS 107. The Solar System. 4. This course covers the physical description of the planets, their satellites, the sun, asteroids and comets, with a strong emphasis on recent information from landers and fly-by probes. This course includes discussions of how science is known, learned and taught, which will be of interest to future teachers and others who may wish to combine work with students and science. Fulfills natural science/mathematics requirement (1998 & 2019).


PHYS 111. Introduction to Physics for the Life Sciences I. 4. The laws of physics describe the constraints and possibilities within which living organisms must thrive. Organisms must support themselves against gravity, must move through fluids, and must manage the thermodynamics of energy production and consumption. A thorough understanding of the tools and concepts of physics can undergird a richer understanding of the properties and processes of life and the technologies we use for research and medicine. This course will embed the ideas and modeling skills of physics in a rich biological and medical context, emphasizing analytic skills, modelling and problem-solving. Prerequisite: PHYS 111.

PHYS 112. Introduction to Physics for the Life Sciences II. 4. The laws of physics describe the constraints and possibilities within which living organisms must thrive. Organisms must support themselves against gravity, must move through fluids, and must manage the thermodynamics of energy production and consumption. A thorough understanding of the tools and concepts of physics can undergird a richer understanding of the properties and processes of life and the technologies we use for research and medicine. This course will embed the ideas and modelling skills of physics in a rich biological and medical context, emphasizing analytic skills, modelling and problem-solving. Prerequisite: PHYS 111.

PHYS 114. Introduction to Electronics for Scientists. 4. Introduces students to the behavior of the fundamental building blocks of modern electronic devices and the underlying scientific principles that make these devices work. Topics will be derived from analog and digital electronics and include resistance, capacitance, diodes, signal filtering, positive and negative feedback, operational amplifiers, Boolean logic, logic gates, and digital to analog conversion. This course is designed for students majoring or minoring in physics and is also appropriate for other math and science students with good quantitative skills who are interested in exploring the fundamentals of electronics. Prerequisite: any one of the following courses: CHEM 111, MATH 121, MATH 123, PHYS 112, PHYS 117, PHYS 121 or instructor permission. Spring. Fulfills natural science/mathematics requirement (1998 & 2019). Offered in alternate years.

PHYS 117. Physics I. 4. For science majors and other interested students whose mathematics background includes algebra, trigonometry, and calculus. Topics chosen are primarily from mechanics. Prerequisite: MATH 220. Fall.

PHYS 118. Physics II. 4. For science majors and other interested students whose mathematics background includes algebra, trigonometry, and calculus. Topics chosen are primarily from optics and modern physics. Prerequisite: PHYS 117, MATH 220 or instructor permission. Spring.

PHYS 121. Classical and Modern Physics I. 4. For physics majors and others interested in physics. This course is not a survey but an introduction to the thinking and analysis processes of physics, with classroom and laboratory topics chosen from modern and classical physics to emphasize the skills needed to think like a physicist. Corequisite: Math 220 or instructor permission. Fulfills natural science/mathematic requirement. Spring.

PHYS 131. Experimental Expl. of Physics. 1-4. Project-based introduction to experimental design, hypothesis testing, and data analysis. Students will develop guided inquiry questions and design experiments to test their hypotheses. (1)

PHYS 132. Intro. to Experimentation. 3-4.

PHYS 150. Special Topics. 8. May also be offered at 250, 350 and 450 levels.

PHYS 204. Electronics. 4. Introduces students to the behavior of the fundamental building blocks of modern electronic devices and the underlying scientific principles that make these devices work. Topics will be derived from analog and digital electronics and include resistance, capacitance, diodes, signal filtering, positive and negative feedback, operational amplifiers, Boolean logic, logic gates, and digital to analog conversion. This course is designed for students majoring or minoring in physics and those other students who have completed an introductory calculus-based course in electricity and magnetism and are interested in applying this background to electronics. Prerequisite: PHYS 223 or instructor permission. Spring. Corequisite: PHYS 480 strongly recommended. Fulfills natural science/mathematics requirement (1998 & 2019). Offered in alternate years.
PHYS 210. Observatory Practice. 4.
For physics majors and others interested in learning to use the J. Donald Cline Observatory at Guilford. The course includes astronomical background drawn from solar system, stellar and extra-galactic astronomy but the emphasis is on the use of the equipment, methods of data acquisition and analysis of results. Fulfills natural science/mathematics requirement (1998 & 2019).

The final semester of the introductory physics sequence. Topics are chosen from modern and classical physics to complement those discussed in PHYS 121.
Prerequisite: PHYS 117 or 121 or instructor permission. Corequisite: PHYS 480 strongly recommended. Fall.

The thermal properties of matter are studied from the applied approach of thermodynamics and the theoretical analysis of statistical mechanics. Topics include the laws of thermodynamics, equations of state, first order phase transitions, partition functions, entropy and the quantum statistics of particles.
Prerequisite: MATH 224, PHYS 223 or instructor permission. Corequisite: PHYS 480 strongly recommended. Spring.

PHYS 231. Experimental Physics I. 2.
Intermediate-level laboratory course to develop experimental design and measurement techniques, data reduction and analysis methods, and oral and written presentation skills. Experiments vary as equipment and technologies evolve. Prerequisite PHYS 122 or instructor permission. Fall.

Intermediate-level laboratory course to develop experimental design and measurement techniques, data reduction and analysis methods, and oral and written presentation skills. Experiments vary as equipment and technologies evolve.
Prerequisite: PHYS 121 or instructor permission. Spring.

PHYS 250. Special Topics. 8.
May also be offered at 360 and 460 levels.

PHYS 290. Internship. 1-8.
May also be offered at the 390 level.


The presentation of independent research projects completed during summers (e.g. the National Science Foundation-sponsored Research Experience for Undergraduates) or industrial internships. Students who are unable to undertake research at other institutions may design and complete their research on campus under the guidance of Guilford faculty.


PHYS 421. Mechanics. 4.
The study of forces and energy and their effect on the motion of particles. Topics include the motion of a particle in a force field, the dynamics of rigid bodies, and the detailed study of damped, forced and coupled oscillators. Newtonian and Lagrangian formulation of mechanics as well as computational methods of solution will be studied.
Prerequisite: PHYS 223 and MATH 226 or instructor permission. Offered in alternate years.

PHYS 422. Electromagnetism. 4.
The study of the theory of electric and magnetic fields and their interactions with matter. Topics include the use of vector calculus, Gauss’s law, Ampère’s law, diamagnetism, multi-pole fields and the law of Biot-Savart.
Prerequisite: PHYS 223 and MATH 226 or instructor permission. Offered in alternate years.

PHYS 423. Quantum Mechanics. 4.
The study of the theory of the interaction of particles, waves and fields in atomic and subatomic systems. Topics include the Schrödinger formulation, operator formalism and perturbation theory.
Prerequisite: PHYS 223 and MATH 226 or instructor permission. Offered in alternate years.

PHYS 441. Advanced Modern Physics. 4.
Topics in applied modern physics including the hydrogen atom and other atomic systems, nuclear physics, condensed matter and elementary particles.
Prerequisite: PHYS 223 and MATH 226 or permission of the instructor. Offered in alternate years.

PHYS 442. Advanced Classical Physics. 4.
Advanced topics in classical mechanics and electromagnetism. Topics may include Hamiltonian mechanics, motions of particles in non-inertial reference frames, the Maxwell equations, electromagnetic radiation and the dynamics of relativistic particles and electromagnetic fields.
Prerequisite: PHYS 421, PHYS 422 and MATH 226 or instructor permission. Offered based upon demand.

PHYS 443. Astrophysics. 2-4.
The study of the application of physics to astronomical systems. Topics may include stellar structure and evolution, energy generation and nucleosynthesis, the interstellar medium, radiative transfer and degenerate stars.
Prerequisite: instructor permission. Offered based upon demand.

PHYS 450. Special Topics. 1-8.


PHYS 461. Physics Research Seminar. 0.
All students writing theses or doing other research within the physics department are required to take this course in which students and faculty exchange suggestions, ideas and insights into their research. Fall and spring. CR/NC. Students may take this course more than once and may count up to 4 credits of Physics Research Seminar toward graduation.

Independent research projects that culminate, with guidance, in a well-defined research thesis. The thesis must be presented both orally and in writing. The thesis should be written in the standard form for technical papers in physics as currently set forth in Volume 10 of the Journal of Undergraduate Research in Physics. Students are encouraged to present their papers at NCUR or another appropriate conference. Fall and spring.

PHYS 480. Physics Department Seminar. 0.
All students taking PHYS 121 or above are required to attend the Physics Department Seminar. During the semester, each student will give presentations on some aspect of the physics work on which he or she is currently working. Fall and spring.
Although enrollment is normally during the fall of the final year, the student is expected to begin work during the intermediate years on independent research projects that will culminate, with guidance, in a well-defined research thesis. The thesis must be presented both orally and in writing. The thesis should be written in the standard form for technical papers in physics as currently set forth in Volume 10 of the Journal of Undergraduate Research in Physics. Students are encouraged to present their papers at NCUR or another appropriate conference.